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ABSTRACT 

An analysis  w a s  conducted of three KC-135 f l i g h t  samples 

t ha t  had been s o l i d i f i e d  i n  near-zero gravi ty .  

These samples had been generated during near-zero gravi ty  

t e s t ing  of M553 Experiment Skylab F l ight  hardware. The samples 

evaluated w e r e  a l l  Star-J S te l l i t e ,  a cobal t  base a l loy .  

The ana ly t ica l  procedures (opt ica l  microscopy, scanning elec- 

t ron microscopy, e lectron microprobe, X-ray d i f f rac t ion ,  differen-  

t i a l  scanning calorimetry, and microhardness) t o  be used on the 

Skylab f l i g h t  samples w e r e  optimized and the ana ly t ica l  r e s u l t s  

are presented. 
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INTRODUCTION 

A s  p a r t  of i t s  e f f o r t s  i n  the Materials Science and Manufac- 

tur ing i n  Space (MS/MS) program, NASA i s  conducting experiments i n  

the Skylab program with the ul t imate  goal of manufacturing useful  

products i n  space. The M553-Sphere Forming Experiment, t o  be con- 

ducted within the M512 f a c i l i t y  of Skylab, has been planned, speci- 

f i e d  and fabricated.  To evaluate -the equipment, procedures, and 

specimen evaluation sequence, experiments w e r e  performed on a 
KC-135 a i r c r a f t  flown i n  parabolic arcs t o  achieve a near-zero-g 

condition 

Three of the material samples used i n  the KC-135 f l i g h t s  w e r e  

evaluated by the G r u m n  Research Department, under NASA Contract 

(NAS 8-28728) . This Memorandum describes the invest igat ion.  
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EXPERIMENTAL RE SULTS AND DISCUSS10r;l 

Each of the three samples evaluated w a s  a "Star-J Stel l i te"  

castable  cobal t  base a l loy .  Before discussing the r e s u l t s ,  the  

metallurgy and metallography of the a l loy  are described t o  .form 

the basis  f o r  comparison with the "zero-g" s o l i d i f i e d  specimens. 

The nominal composition i s  given i n  Table 1 (Ref. 1); t h i s  

Table 1 

NOMINAL COMPOSITION OF STAR-J 

Element Composition (wt.%) 

C 

S i  

Mn 

Fe 

N i  

C r  

W 

Others 

co 

2.5 * 0.2 

1.0 max 
1.0 rnax 
3.0 rnax 

2.5 rnax 
32.5 * 1.5 

17.5 * 1.5 

2.0 max 

Balance 

composition i s  reasonably w e l l  represented by the pseudo-quaternary 

composition given i n  Table 2 .  However, s ince quaternary systems 

are d i f f i c u l t  t o  portray i n  two dimensional space, w e  introduce the 

fur ther  s implif icat ion of considering the ternary Co-C-M, where 

M i s  a m e t a l  element (primarily chromium o r  tungsten). 
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Table 2 

STAR- J PSEUDO-QUATERNARY COMPOSITION 

Element 

C 

co 

C r  

W 

compos i t ion (w t . %) 

2.5 

47.5 

32.5 

17 .5  

The phases found i n  the ea r th  (1-g) melted Star-J, based on 

information supplied by the Cabot Corporation (Ref. 2) , are l i s t e d  

i n  Table 3. The presence of these phases allows us  t o  construct  a 

Table 3 

PHASES PRESENT I N  STAR-J STELLITE 

Phase Crystal  Symmetry Descriptor 

Rhombohedral Primary Prec ip i ta te  and 
Secondary Prec ip i ta te  M7C3 

Cubic Secondary Prec ip i ta te  MSc 
a - co Hexagonal Matrix 

Occurs Rarely M23C6 Cubic 

p a r t i a l  ternary phase diagram as shown i n  Fig. la and a repre- 

sentat ive isopleth as shown i n  Fig. l b  (Ref. 3 ) .  Further, the 

primary metallic element i n  the carbide i s  expected to  be 

chromium, whereas the pr incipal  metallic elements i n  the ternary 

M6C 

M7C3 

carbide are l i k e l y  to  be cobal t  and tungsten. The la t te r  
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carbide typ ica l ly  has a range of stoichiometry varying as much as 
from Co2W4C t o  Co4W2C (Ref. 4 ) .  

The suggested isopleth should vary somewhat, depending on 

whether the region sol idifying i s  within the compositional range 

of Region I o r  Region I1 of the ternary t r i ang le  (Fig. l a ) .  I f  

the so l id i f i ca t ion  i s  within Region I instead of Region 11, the  

%C and a phases w i l l  be interchanged i n  Fig. l b .  The primary 
so l id i f i ca t ion  phase, however, i s  invariably the M7C3 carbide 

and, depending on whether the so l id i f i ca t ion  i s  i n  Region I o r  11, 

the secondary c rys t a l l i za t ion  i s  M6c o r  a ,  respect ively.  I f ,  

through elemental segregation, the tungsten content i s  s i g n i f i -  

can t ly  reduced, there  w i l l  a l s o  be the p o s s i b i l i t y  of the react ion 

Co4W2C --+ (Coy w)23c6 
normal behavior (Ref. 2 ) .  There i s  elemental subs t i tu t ion  i n  a l l  

of the phases present i n  t h i s  commercial a l loy ,  but  the elemental 

subs t i tu t ion  i s  l i k e l y  t o  be most appreciable within the cobal t  

terminal s o l i d  solut ion.  Consequently, a t  very high temperatures, 

M w i l l  conveniently be considered chromium and, a t  lower tempera- 

tures ,  tungsten, with the remaining elements found i n  the a 
terminal so l id  solut ion.  

(Ref. 4 ) ,  bu t  t h i s  i s  considered t o  be ab- 

Analysis of as-received Star-J material, fo r  comparison to  

f l i g h t  samples ,  gave the following r e su l t s :  

M7C3 Microstructure. The microstructure consis ts  of primary 

carbides i n  a ternary eu tec t i c  matrix of 

ondary M7C3 (Fig. 2 ) .  The primary M7C3 carbides r e f l e c t  t h e i r  

rhombohedral c rys t a l  symmetry i n  t h a t  t h e i r  morphology i s  hexagonal 

i n  cross sect ion and needle-like i n  the longi tudinal  direct ion.  

In the as-received material, n icke l  w a s  discovered i n  these car-  

bides i n  addi t ion t o  the an t ic ipa ted  chromium. The primary M7C3 

carbides w e r e  almost invariably surrounded by a ,  which would 

M6cy a - Coy and sec- 
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" 1  
L.... r 

indicate  t h a t  the s o l i d i f i c a t i o n  sequence shown i n  Fig. l b  is the 

most common. The subsequent e u t e c t i c  o r  secondary carbide c rys t a l -  

l i z a t i o n  i s  not as s ingular ly  defined morphologically and the 

M7C3 (secondary) and M6C carbides are d i f f i c u l t  t o  differen-  

t i a t e  under the l i g h t  microscope. The %C morphology is  some- 

times i n  the form of "Chinese s c r i p t , "  which r e s u l t s  from the 

growth of secondary phases, i n  a eu tec t i c  reaction, i n  the form of 

dendr i t ic  skeletons (Ref. 3 ) .  Some of these skeletons appear i n  

Fig. 2a, but the balance of the prec ip i ta t ion  is  not r ead i ly  iden- 

t i f i a b l e  o p t i c a l l y  as r e l a t ing  to  a pa r t i cu la r  carbide; these par- 

t i c l e s  a r e  of i r r egu la r  faceted morphologies. 

Different ia t ion of these p a r t i c l e s  i s  desirable and the m o s t  

convenient means fo r  doing so i s  scanning electron microscopy (SEM) 

and specimen current  imaging with the electron microprobe. 

has a d i s t i n c t  advantage: 

f i ca t ion ,  depth of f i e l d ,  specimen or ientat ion,  and resolution, 

whereas the la t ter  can give an accurate representation of the ele- 
mental d i s t r ibu t ion  (microchemistry). The la t ter  may a l so  be done 

on the SEM i f  energy dispersive equipment i s  avai lable .  Micro- 

graphs representat ive of Star-J material are shown i n  Figs. 2b and 

2c  fo r  SEM and microprobe, respectively.  The po la r i ty  inversion 

i s  by coincidence i n  t h i s  case, and i s  not  meaningful. 

Each 

the former has great  l a t i t u d e  in  magni- 

Hardness. Star-J i s  an a i r -cas tab le  a l l o y  of high as-cast  

hardness. The expected Br ine l l  hardness (Ref. 1) i s  620-650 Kg/m . 
These values w e r e  checked u t i l i z i n g  a Reichert microhardness t e s t e r  

and converting to  the Br ine l l  sca le .  The r e s u l t s  are shown i n  

Table 4 f o r  each of the pr incipal  const i tuent  phases. The hardest  

phase i s  the M7C3 phase (1340 Br ine l l ) ;  next i s  the %C phase 

(800 Br ine l l ) .  Sof tes t  i s  the cobal t  terminal so l id  solution 

(450 Br ine l l ) .  The aggregate hardness w a s  found t o  be in  reason- 

able  agreement with the l i t e r a t u r e .  

2 
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Table 4 

HARDNESS OF STAR-J CONSTITUENT PHASES 

Microbrinell 
Hardne s s 

Phase (kg/m 2) Descriptor 

M7C3 1340 As-Received 

800 As-Received M6 

a - co 450 As-Received 

14 50 Sample #I, no 
M7C3 nickel  i n  primary 

carbide 

Curie Point .  The as-received Star-J material i s  nonmagnetic 

a t  room temperature and cycling t o  as low as 
cause a ferromagnetic transformation. A s  t h i s  i s  the lower t e m -  

perature  l i m i t  of our equipment, w e  can only report  t h a t  the Curie 

point  i s  below -196°C. 

r i a l  (Ref. 2) indicated t h a t  it would be highly unusual fo r  t h i s  

castable  a l l o y  a t  room temperature t o  exhib i t  a magnetic phase due 

t o  elemental segregation. 

-196°C did not  

A check with the suppl iers  of t h i s  mate- 

The following subsections describe our evalualtion of the re- 

spective KC-135 f l i g h t  samples. 

Sample 13 - Fl ight  2 

Sample 13 from KC-135 f l i g h t  2 i s  a S t a r - J  S t e l l i t e  re ta ined 

sample; i . e . ,  it w a s  s o l i d i f i e d  on a capture s t i ng  a l s o  made of 

Star-J S te l l i t e .  
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The surface s t ruc ture  of the sample indicated a so l id i f i ca -  

t ion  sequence that i n i t i a t e d  i n  the "sting" region. 

r e l a t i v e l y  la rge  sample (1.4990 grams) ; i ts  surface morphology i s  

depicted i n  Figs. 3a and 3b. 

c r e t e  surface morphologies t h a t  can be qua l i t a t ive ly  described as 

smooth, intermediate, coarse, and an anomalous magnetic bulge. 

This w a s  a 

This sample demonstrated four d is -  

The smooth region shown i n  Fig.  3a w a s  located immediately 

around the capture s t i ng  (Figs. 4a and b) . It should be noted? i n  

Fig. 4a t ha t  the region immediately surrounding the s t i ng  evidenced 

no primary M7C3 carbides and t h i s  could account f o r  the smooth 

external  surface morphology shown i n  Fig. 4b. This lack of p r i -  

mary M7C3 

a microchemical f luctuat ion t h a t  resu l ted  i n  a eu tec t ic  composi- 

t ion  i n  t h i s  region. The f luctuat ion might w e l l  have been caused 

by the preferen t ia l  melting of the low melting point const i tuents  

of the s t ing .  

carbide might be due e i t h e r  t o  the cooling rate o r  t o  

The region of intermediate surface roughness w a s  characterized 

microstructural ly  by regions similar to  those shown i n  Figs. 5a 
and b. These regions contained primary M7C3 carbides and ap- 

peared t o  have growth direct ions p a r a l l e l  t o  the specimen surface.  

The carbides w e r e  f i n e r  than the as-received material. This would 

indicate  t h a t  there  w a s  l i t t l e  thermal o r  mechanical disturbance 

during the s o l i d i f i c a t i o n  of the outer  she l l .  

would have resu l ted  i n  a strong r a d i a l  growth morphology f o r  the 

M7C3 
s t ruc ture  t h a t  i s  somewhat unusual i s  the fan-l ike a r ray  of 

carbides i n  ce r t a in  regions of Fig. 5a, and i n  Fig. 5b. These 

arrays show a crystal lographic  or ien ta t ion  relat ionship.  

areas between these arrays are almost t o t a l l y  f i l l e d ,  w i t h  l i t t l e  

evidence of wicking, shrinkage, o r  evaporative lo s s  (Fig. 5b). 

A thermal gradient  

carbides,  which w a s  not  observed. One aspect of t h i s  micro- 

M7C3 

The 
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The nodular appearance of the in t e ra r r ay  areas may be due t o  the 

dendr i t ic  s o l i d i f i c a t i o n  of eu tec t i c  carbides of the M6C type. 

The coarse surface of t h i s  sample i s  shown i n  Fig. 6 and i s  

located i n  the region of the sample t h a t  i s  the last  region to  

so l id i fy .  This morphology is  due to  "stacks" of primary M7C3 

carbides with void areas between the primary needles. 

gions contain reduced quant i t ies  of 

M7C3 
normally r e s u l t  i n  the secondary and eu tec t i c  so l id i f i ca t ion .  The 

primary M7C3 carbides are qu i t e  large,  which would indicate  more 

t i m e  to  nucleate and grow than i n  other regions, and the void 

areas could be due to  e i t h e r  wicking, evaporative loss, o r  shrink- 

age. 

These re-  

and secondary MsC, a - Co, 

pa r t i c l e s ,  indicat ing a deficiency of the l i qu id  t h a t  would 

The bulge region re fer red  t o  is anomalous in  behavior i n  t h a t  

it i s  magnetic. This i s  a d i sc re t e  region with wel l  defined bound- 

aries, as shown i n  Fig. 7a and a t  higher magnification i n  Fig. 7b. 

It w a s  found to  be abnormally high i n  nickel  and to  contain alumi- 

num, chromium, and cobal t ,  as w e l l .  This indicates  the log ica l  

or ig in  t o  be one of contamination by a fragment of the alumina 

pedestal  t h a t  came i n  contact and reacted with the l i qu id  m e t a l .  

The small globular p a r t i c l e s  shown i n  Fig. 7b fluoresced under 

the electron beam, indicating an oxide phase. 

unreacted alumina from the fragment o r  a sp ine l  reaction product 

of the form (Ni,Co,Fe)O* (A1,Crl2O3. The dendr i t ic  matrix did not  

fluoresce, indicating a lower oxygen content. This matrix w a s  p r i -  

marily nickel-aluminum of a magnetic composition, but no e f f o r t  w a s  

made to  define quant i ta t ive ly  the phase relat ionships  involved as 

the region w a s  an a r t i f a c t  of poor melting pract ice  and not  re- 
l a t ed  to  the specimen material. 

This i s  most l i k e l y  
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One fea ture  t h a t  w a s  apparently due t o  the alumina contamina- 

t ion,  but which i s  of i n t e r e s t  nevertheless,  is the very high 

nickel  content i n  t h i s  region and the corresponding nickel  de f i -  

ciency i n  the primary M7C3 carbides. Apparently, the a f f i n i t y  

of nickel  f o r  aluminum i s  considerably grea te r  than t h a t  f o r  chro- 

mium o r  cobalt ,  and r e s u l t s  i n  the unusual elemental par t i t ion ing  

noted. This par t i t ion ing  i s  r e f l ec t ed  by the reduced n icke l  con- 

t e n t  increasing the M7C3 microbrinell hardness from 1340 to  1450, 

In summary, w e  conclude t h a t  the most s t r ik ing  fea ture  of 

t h i s  sample w a s  a d i sc re t e  magnetic region, but t h a t  i t s  or ig in  

was not  r e l a t ed  to  the zero-g processing. The microstructure 

varied i n  a r ead i ly  predictable fashion, upon consideration of 

possible var ia t ions  within composition l i m i t s  and cooling r a t e s ;  

however, i t  occurred on a f i n e r  sca le  than t h a t  usual ly  found i n  

as-received material 

Sample 23 - Fl ight  2 

This w a s  a small sample of Star-J S te l l i t e  tha t  most l i k e l y  

w a s  a piece of a specimen tha t  exploded on heating, although the 

mater ia l  appeared to  have been f u l l y  molten a t  one t i m e .  

sample (0.0451 g) w a s  only about 1/30 the s ize  of the previous 

sample. 

The 

The surface morphologies w e r e  e n t i r e l y  as previously described 

fo r  Sample 13 except tha t  there w a s  no magnetic region and the s a m -  

p l e  had a minute f l a t  surface, caused by i t s  h i t t i n g  the chamber 

w a l l  while i n su f f i c i en t ly  so l id  to  withstand the impact en t i r e ly .  

The M7C3 p a r t i c l e s  did not  "radiate"  from t h i s  point of impact, 

which led us t o  conclude t h a t  the s o l i d i f i c a t i o n  was wel l  under 

way p r i o r  t o  touching the chamber w a l l .  Two aspects of the sur- 

face morphology t h a t  are worth noting are shown i n  Figs. 8 and 9.  

9 
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Figure 8 i l l u s t r a t e s  a region of coarse surface morphology with 

subs tan t ia l  i n t e r p a r t i c l e  void area. Two fea tures  t h a t  should be 

noted are the hollow ends of the primary carbides and the 

nodular particles lying underneath and between the M7C3 p a r t i -  

c l e s .  

are most l i k e l y  end points of the 

sample surface.  

M7C3 
growth i n  the [ O O O l ]  "C" d i rec t ion  (using hexagonal indices) 

but on planes other  than the basal  plane. 

would be the [Olio)  prismatic planes. Consideration of a growth 

process l imited t o  t h i s  set of planes, and with some broadening i n  

the (FllO) di rec t ions  i n  addition to  the [OOOl] primary growth 

M7C3 

The nodular p a r t i c l e s  contain both cobal t  and tungsten and 

M6c dendr i t ic  skeleton a t  the 

p a r t i c l e s  i s  less obvious, but probably r e s u l t s  from c r y s t a l  

The reason f o r  the hollow ends of the primary 

The most l i k e l y  planes 

direct ion,  r ead i ly  explains the hollowed core (empty a t  the surface 

and f i l l e d  internal ly)  t h a t  other mechanisms f a i l  to  do. This a l s o  

explains the prismatic growth s t e p s  noted on some hexagonal cross 

sections (see Fig. 2a) as w e l l  as most of the a typica l  cross sec- 

t ions  encountered. 

Figure 9 i s  a SEM micrograph i n  a region t h a t  would have been 

c l a s s i f i e d  as being of intermediate surface roughness. 

case, the primary M7C3 

and a r e  int imately dispersed amongst the nodular M6C p a r t i c l e s .  

This could r e s u l t  from a shor te r  growth period f o r  the primary 

M7C3 
have a lower volume percentage of proeutectic 

In t h i s  

carbides are on an extremely f i n e  sca le  

p a r t i c l e s ,  o r  from uniform nucleation i n  an a l l o y  t h a t  would 

M7C3* 

Sample 1 ("Pore" Sample) - Fl ight  1 

When compared to  the other  two specimens, t h i s  Star-J sample, 

shown i n  Fig. loa, had several  d i s t i n c t  features  worth noting. 

10 
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It w a s  d u l l  i n  appearance, perhaps indicat ing 

contamination. 

It w a s  severely f l a t t ened  on one s ide  due to  

h i t t i n g  the chamber w a l l  p r i o r  t o  so l id i f i ca -  

t ion .  

It had an in t e rna l  pore t h a t  ex i ted  t o  the outer 

surface a t  the mid-portion of the "hemisphere." 

The f l a t t ened  base of the sample w a s  nonmagnetic 

whereas the "hemispherical" surface w a s  magnetic. 

The in t e rna l  microstructure could be roughly 

broken in to  f i v e  d i s t i n c t  regions, as shown photo- 

graphical ly  i n  Fig. 10b and schematically i n  

Fig. 1Oc. 

each microstructural  region i n  numerical sequence, they 

are presented i n  Fig. 11 i n  a clockwise fashion, s t a r t i n g  a t  the 

bottom, and are arrayed about a low magnification micrograph of 

the sample t h a t  shows the regions of i n t e r e s t .  

Region I i s  a t  the f la t tened  base and w a s  very chemically re- 

The microstructure i s  extremely f i n e  and the p rec ip i t a t e  s i s t a n t .  
morphology i s  such t h a t  no primary M7C3 prec ip i t a t e s  are evident. 

This change i n  morphology could be due to  a chemical s h i f t  r e s u l t -  

ing i n  s t r i c t l y  eu tec t i c  s o l i d i f i c a t i o n  i n  t h i s  region; however, 

microprobe analysis  of t h i s  region did not support t h i s  contention 

(Fig. 14). It i s  more l i k e l y  t h a t  the morphological change i s  due 

t o  the extremely rapid cooling rate i n  t h i s  region and perhaps as 
a r e s u l t  of a s ign i f i can t  degree of undercooling 

w e l l .  It has been shown (Ref. 5) t ha t  undercooling a eu tec t i c  

l i qu id  i n  excess of 170°C and subsequent rapid d i rec t iona l  s o l i d i -  

f i ca t ion  r e s u l t s  i n  an extremely f i n e  equiaxed p rec ip i t a t e  morphol- 

(> 170°C) as 
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ogy (Fig. l la)  . This p r e c i p i t a t e  s t ruc tu re  is  on an extremely 

f i n e  scale with M6c mean p a r t i c l e  diameters as small as l p m  a t  
the f la t tened  surface and gradually increasing to  5pm approxi- 

mately 200pm i n t o  the sample (Fig. 1 2 ) .  From t h i s  point inward, 

the p rec ip i t a t e  morphology i s  s i g n i f i c a n t l y  d i f f e ren t  i n  t h a t  

r a d i a l  proeutectic primary M7C3 p a r t i c l e s  are evident and the 

mean p a r t i c l e  diameters increase s ign i f i can t ly  f o r  both the 

and M6C carbides. %C mean p a r t i c l e  diameter and number of 

pa r t i c l e s /un i t  area, shown schematically i n  Fig. 12, are tabulated 

i n  Table 5, and the microstructure of t h i s  region i s  presented i n  

Fig. 13. I f  rapid,  nondiffusional, s o l i d i f i c a t i o n  w e r e  present, 

i t  would be an t ic ipa ted  t h a t  the microchemistry i n  t h i s  region 

would be very near constant. This i s  d e f i n i t e l y  the case within 

1OOpm of the f l a t  surface,  but  begins t o  deviate from a constant 

mean value beyond t h a t  point  (Fig. 14).  This may be a r e s u l t  of 

increasing p a r t i c l e  s i z e  r e l a t i v e  t o  the microprobe electron beam 

(3-5pm i n  diameter) and may r e f l e c t  simply an increased deviation 

from appropriate sampling statist ics.  In any case, t h i s  unique 

morphological region extends a t  least 1OOpm inward and i s  l i k e l y  

t o  extend inward as f a r  as 200pm i n  some regions. A character is-  

t i c  dimension of the M7C3 p a r t i c l e s  i n  Fig. l l a  is  4.5pm with 

a maximum diameter of 10.5pm. Figure l l a  may be considered to  

M7C3 

be a region approximately 60pm from the f la t tened  surface.  C r i t i -  

c a l  p rec ip i t a t e  dimensions fo r  Regions I - I V  are tabulated i n  

Table 5. Microbrinnel hardness of t h i s  region is  700. 

Region 11 is  depicted microstructural ly  i n  Fig. l l b  and may 

be considered t o  begin about 300pm inward from the f la t tened  

surface.  This region begins to  show the r a d i a l  growth morphology 

of the primary M7C3 carbides, indicat ing a s ign i f i can t  d i f fu -  

s iona l  contribution and enlarged c r i t i c a l  dimensions (Table 6) . 
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Table 5 

%C PARTICLE ANALYSIS OF REGION I ,  SAMPLE I ,  FLIGHT I 

2 M6c Particles/cm 
#/cm 

4.43 x 10 
4 . 2 1  
4.66 

2 

6 

3.54 
3.54 
3.44 
3.33 
3.54 
3.10 
3.76 
3.54 
3.54 
2.88 
2.66 
2.88 
2.88 
3.10 
2.88 
2.43 
2.88 
2.43 
2.21 
2.43 

1.55 
1.33 

.37 

.99 
1.10 

Distance Mean Particle Diameter 
(vm) (cLm> 
10 
20 
30 
40 
50 
60  
70 
80 
90 
100 
110 
120 
130 
140 
150 
16 0 
170 
180 
190 
200 
2 10 
220 
230 
240 
250 
26 0 
270 
280 
2 90 
300 
3 10 

13 

1.25 

2.50 

3.75 

3 .75  

5.00 

5.00 

15.0 

20.0 



Table 6 

CRITICAL PARTICLE DIMENSION I N  THE 

DIFFERING REGIONS OF SAMPLE I 

Region Particle Type 

M7C3 I 

M6 

I1 

111 

M7C3 

M6 

M7C3 

M6 

M6 IV 

M7C3 As-Rec. 

M7C3 Rough Sfce. 
Region 13 

Maximum 
Dimension (Vm) Descriptor 

max 10.5 Transverse 

mean 4.5 

mean 3.0 Transverse 

max 12 .0  

max  15.7 

mean 4.4 

max 14.3 

max 24 

max 20 LL Probe 

mean 7.5 

max 14 

mean 12.5 

max 18 

max 120 

max 60 

The maximum transverse diameter of the M C 

t h i s  region w a s  15.7vm, the mean M6C diameter w a s  4.4pm, and 

the maximum M6c diameter w a s  14.3vm, f o r  the l imited sampling 

under taken. 

primary carbides i n  7 3  
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Figure l l c  shows the microstructure i n  the v i c i n i t y  of the 

la rge  in te rna l  pore (Region 111). It i s  clear that the primary 

M7C3 carbides are g r e a t l y  enlarged (maximum diameter 24km) and 

are comparable t o  the diameters measured i n  t h i s  region on the 

electron microprobe (2Okm). This morphology is  comparable t o  the 

region of Sample 13 t h a t  demonstrated a coarse surface morphology; 

however, the l a r g e s t  primary M7C3 carbide noted i n  t h a t  sample 

w a s  60pm. This w a s  probably due to  the grea te r  mass of Sample 13 
and the concomitant increase i n  so l id i f i ca t ion  t i m e  of the las t  

l iqu id .  The maximum diameter of a primary M7C3 part ic le  i n  as- 

received material w a s  12Opm. The %C p a r t i c l e s  w e r e  somewhat 

larger  than those i n  Region I1 (mean diameter 2.5pm, and 14pm 

maximum). 

Region I V  w a s  s ingled out  only because of the w e l l  defined 

dendri t ic  skeleton (Chinese s c r i p t ) ;  t h i s  i s  shown i n  Fig. l l d .  %C 
The maximum diameter of these arrays w a s  approximately 18pm and 

the mean diameter w a s  12.5pm. 

Region V w a s  due t o  contamination from the pedestal  material 

and i s  unl ike any of the other  regions of Sample 1 o r  the contami- 

nated region of Sample 1 3 .  The contaminated regions of Sample 1 

w e r e  extensive, w e r e  very suscept ible  t o  corrosive a t t a c k  (see ex- 

cessive a t t ack  of one const i tuent  i n  Fig. l l e ) ,  and did not  s t rongly 

f luoresce under the electron microprobe beam, indicat ing t h a t  the 

oxygen had e i t h e r  been diss ipated o r  had been widely d is t r ibu ted  

throughout the sample. This morphology seemed to  be general ly  

arrayed about the outer  periphery of the "hemisphere; " however, 

some of the regions extended inward t o  the v i c i n i t y  of the large 

in te rna l  void (Fig. lob) .  The regions w e r e  magnetic; however, 

there  w e r e  no unreacted p a r t i c l e s  of A1203 s t i l l  present, and 

there  w a s  appreciable amounts of cobal t  i n  these regions i n  addi- 

t i o n  t o  the nickel  and aluminum found i n  the magnetic region of 

15 
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Sample 13; t h a t  is, the react ion with the A1203 contamination 

seemed to  have gone to  completion. The Curie point w a s  g rea te r  

than 450°C, indicat ing an appreciable cobalt  content. 

That leaves us with the s ign i f i can t  question of the o r ig in  of 

the large in t e rna l  void. 

the outer  surface,  a void would be ant ic ipated;  however, i n  the 

highly d i rec t iona l  cooling shown, t h i s  i s  not  ant ic ipated.  The 

microstructure and microchemistry adjacent to  the void region i s  

qu i t e  s i m i l a r  t o  t h a t  of the regions of Samples 13 and 23 t ha t  

I f  the sample had uniformly cooled from 

exhibited a coarse surface morphology and i n t e r p a r t i c l e  voids. 

This region would normally be the l as t  to  so l id i fy ;  however, with 

the serious contamination by a low melting point material (aluminum), 

so l id i f i ca t ion  w a s  f a r  from complete as these regions so l id i f i ed .  

Perhaps then, specimen movement o r  reintroduction of "g" forces 

a f t e r  par t ia l  s o l i d i f i c a t i o n  caused a l ap  t h a t  trapped in t e rna l ly  

what normally might have been a near-surface e f f e c t .  

There i s  the a l t e r n a t e  p o s s i b i l i t y  t h a t  the introduction of 

oxygen i n t o  the m e l t  from the 

tha t  l ibera ted  a gas of the CaOb type, where a and b a r e  

in tegers .  This could r e s u l t  i n  gas evolution a t  or  near the reac- 

t ion  in te r face  and might form a cavi ty  of t h i s  type with access to  

A1203 caused a react ion with carbon 

the outer surface.  

Nevertheless, the void i s  not  due to  a uniform in t e rna l  

shrinkage cavi ty  and must be dismissed as an in te res t ing  but l i k e l y  

nonreproducible e f f e c t .  

In summary, t h i s  sample demonstrated an in t e re s t ing  varied 

morphology t h a t  indicated an extremely rapid s o l i d i f i c a t i o n  i n  parts, 

and perhaps s ign i f i can t  undercooling. The value of the specimen w a s  
compromised somewhat, however, because of s ign i f i can t  specimen con- 

tamination by pedestal  material. 
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CONCLUSIONS 

The theore t ica l ,  ana ly t ica l ,  and experimental techniques t h a t  

w e  proposed f o r  evaluating the Skylab f l i g h t  samples have been 

tes ted  and optimized. The r e s u l t s  indicate  t h a t  even samples of 
the complexity of Star-J S t e l l i t e  may be r e l i a b l y  t reated,  with 

meaningful r e s u l t s  generated. 

The s o l i d i f i c a t i o n  cha rac t e r i s t i c s  of the specimens s o l i d i -  

f i ed  i n  zero gravi ty  gave r ise to  p rec ip i t a t e  s i zes  varying from 

0.5 to  0.005 of those normally encountered i n  as-received mate- 

r i a l .  This may have been a r e s u l t  of more rapid cooling due to  

small sample s i z e  o r  the absence of grav i ty  might have enhanced 

undercooling and caused more homogeneous nucleation. 

Sample contamination from the pedestal  material l e d  t o  serious 

ana ly t i ca l  complexities, but i f  t h i s  problem can be minimized i n  

the f l i g h t  samples, then the r e s u l t s  from the specimen evaluation 

sequence w i l l  be meaningful. I f  the f l i g h t  samples do prove to  be 

contaminated, then the consequences of such contamination must be 

determined-. This w i l l  g r ea t ly  expand the analyses and the cos t  

necessary t o  character ize  the samples fu l ly .  

Unfamiliarity o r  disregard f o r  the fundamental phase r e l a t ion -  

ships occurring during s o l i d i f i c a t i o n  o r  supe r f i c i a l  application 

of the ana ly t i ca l  test sequence, can lead to  conclusions tha t  may 

be incorrect .  Effor t  should be made to  assure tha t  these rela- 
tionships are known to  the contractors responsible f o r  the sample 

evaluation. 
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Fig. 1 Hypothetical Phase Relations for Ternary Co-M-C Alloy 
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a) Optical Micrograph 
(1 50x) 

b) Scanning Electron Micrograph 
(8 OOx) 

Dark Grey - M C 
Light Grey - c y  
Terminal Solid 
Solution 
White - M6C 

7 3  

c) Electron Microprobe Image 

White - M7C3 

Grey - Terminal Solid 
So 1 uti  on 

Black - M6C 

( 4 0 W  

Fig. 2 Representative S tar -J  Stellite Microstructures 
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Fig. 3 Surface Morphologies Representative of Sample 13, 
Flight 2 
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a) Transverse Section Through the  Sting and Showing the 
Adjacent Structure of Smooth Surface Morphology (20Ox) 

b) SEM Micrograph of Region of Smooth Surface Morphology 
Surface is Lacking in Primary M7C3 Carbides (30Ox) 

Fig. 4 Region of Smooth Surface Morphology 
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a) Optical Micrograph of Transverse Section through 
the Region of Intermediate Surface Roughness (150x) 

b) SEM Micrograph Showing Bundles of M7C3 Carbides with a 
Nodular Interparticle Morphology. Intermediate Surface Roughness (30Ox) 

Fig, 5 Region of Intermediate Surface Roughness 
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Fig. 6 Surface Region of Coarse 
Voids Between the Needles 

7C3 Carbides with Large 
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a) Micrograph Showing Well Defined Interface (20Ox) 

b) Microstructure of the Dendritic Interior of the Magnetic 
Region (775x) 

Fig. 7 Microstructure of Anomalous Magnetic Region 

25 



-1  
(1450~) 

Showing Interparticle Voids with some Interparticle 
Dendritic Secondary Structure. The hollowed (x" 

dished ends of the M7C3 primary carbides are also evident. 

Fig. 8 SEM Micrograph of Coarse Surface Morphology Region 

(145ox) 
Fig. 9 Region of Intermediate Surface Roughness Showing 

Extremely Fine M7C3 Primary Carbides Interspersed 

Amomg the M6C Nodules 
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a) Exterior (2x) 

b) Interior Transverse 
Section Showing Lateral 
Void 

c) Schematic 
of the Interior 
Regions 

Fig. 10 Macroscopic V i e w s  of Sample 1 
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Fig. 12  Mean Particle Diameter and Particles/Unit Area of M6C 
Particles in Region I of Sample 1. 
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Fig. 13 Electron icroprobe Backscatter Image of Region I of 

30 

Sample 1 (40Ox) 
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Fig. 14 Microchemistry of Sample 1 Region Shown in Fig. 13 
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